

Hypofractionation in particle therapy

Marco Durante

29.04.2014

Radiosurgery (SBRT): the new frontier in stereotactic imageguided radiotherapy

SBRT only possible thanks to IGRT and to the low *mean* dose to parallel organs

Stage I (T1N0M0) NSCLC

Oligometastases

- Hepatocellular carcinoma
- Advanced (T2-T4; >3 cm) NSCLC
- Localized tumors in kidney, prostate, pancreas, adrenal gland, pravertebal tumors etc.

$\mathbf{BED}_{\alpha/\beta} = nd \left[1 + d/(\alpha/\beta)\right] \qquad (LQ \text{ model})$

Brown et al., Int. J. Radiat. Oncol. Biol. Phys. 2013

Depth dose distribution of various radiation qualities

Charged particle physics reduces the dose to the normal tissue and thus makes hypofractionation easier

I II —

4

Treatment plans with protons: prostate

Proton Therapy Achieves Better Conformation to the Tumor and Minimizes the Dose to Healthy Tissue

Courtesy of Reinhold Schulte, LLUMC

Durante & Loeffler,

Nature Rev Clin Oncol 2010

Potential advantages

High tumor dose, normal tissue sparing
Effective for radioresistant tumors
Effective against hypoxic tumor cells
Increased lethality in the target because cells in radioresistant (S) phase are sensitized
Fractionation spares normal tissue more than tumor
Reduced angiogenesis and metastatization

The radiobiological adavantages of particle therapy

PIDE database – <u>http://www.gsi.de/bio-pide</u> Friedrich *et al., J. Radiat. Res.* 2013

CLINICAL INDICATIONS

Established clinical indications

- Skull base tumors
- Spine tumors
- Eye tumors (p)

Solid literature results

- Pediatric tumors (p)
- Head and Neck tumors
- Prostate tumors

Courtesy of Marco Krengli, Novara

- Adult
 - Base of Skull & Spinal Chordoma
 - Base of Skull Chondrosarcoma
 - Spinal & Paraspinal Bone/Soft Tissue Sarcomas (Non Ewing's)
- Paediatric
 - Base of Skull & Spinal Chordoma
 - Base of Skull Chondrosarcoma
 - Spinal & Paraspinal 'adult type' Bone and Soft Tissue Sarcomas
 - Rhabdomyosarcoma
 - Orbit
 - Parameningeal & Head & Neck
 - Pelvis
 - Ependymoma
 - Ewing's Sarcoma
 - Retinoblastoma
 - Pelvic Sarcoma
 - Optic Pathway and other selected Low Grade Glioma
 - Craniopharyngioma
 - Pineal Parenchymal Tumours (not Pineoblastoma)
 - Esthesioneuroblastoma

UK overseas clinical indications for protontherapy, courtesy of Simon Jolly, UCL

UK list of typical indications <2% patients

ITALIAN NETWORK FOR HADRONTHERAPY

EXISTING CENTRES FINANCED CENTRES **INTEREST FOR PROTONS**

Working Group of AIRO, 2003, 2008, 2008

(120'000 new cases/year with conventional RT):

protontherapy - elective: protontherapy – clinical trials: therapy with ¹²C-ions – cl. trials

Conclusions of AIRO:

1 centre for ions

4-5 centres for protons

1'885

14'490

6'860

New cancers where particles may potentially lead to a breakthrough

- Lung
- Pancreas
- Local recurrence of rectal cancer
- Breast
- Hepatocellular carcinoma
- Glioblastoma

Siegel et al., CA Cancer J Clin 2013

Lung cancer: 2nd in incidence and 1st in mortality for both sexes in US

40 GyE, 1 fraction, 3 fields, gating

Tsujii et al. Carbon Ion Radiotherapy, Springer-Verlag, 2014

Intrafractional movements and hypofractionation in NSCLC

courtesy of Chritoph Bert, University of Erlangen & GSI

Courtesy of M. Söhn, LMU

Particle therapy vs. X-rays for NSCLC

Stage I NSCLC

- Proton data from LLUMC, HIBMC, NCCE, University of Tsukuba (10-22 fr)
- Carbon ion data from NIRS (hypofractionation trial)

Durante, Br. J. Radiol. 2013

RBE and GyE

	a/β [Gy]
Early	
Skin	9-12
Jejunum	6-10
Colon	10-11
Testis	12-13
Tumor-Tissue	~10
Late	
Spinal Cord	1,7-4,9
Kidney	1,0-2,4
Lung	2,0-6,3
Bladder	3,1-7

Ions vs. X-rays in SBRT for NSCLC

TCP vs. BED for Stage I NSCLC by X-rays or charged particles

Durante, Br. J. Radiol. 2013

Steinsträter *et al., Int. J. Radiat. Oncol. Biol. Phys.* 2012

Re-oxygenation in radiosurgery

- Models of oligofractionation predict failure for hypoxic tumors
- re-oxygenation between fractions is in fact essential for local control for at least some tumors (H&N, cervix, pancreas, prostate).
- if the number of fractions is severely reduced then this vital process will be rendered less effective

Published in final edited form as: Int J Radiat Oncol Biol Phys. 2010 October 1; 78(2): 323–327. doi:10.1016/j.ijrobp.2010.04.070.

Stereotactic ablative radiotherapy should be combined with a

hypoxic cell radiosensitizer

heavy ions

J. Martin Brown, D.Phil., Maximilian Diehn, M.D., Ph.D., and Billy W. Loo Jr., M.D., Ph.D. Department of Radiation Oncology

Stanford clinical trial on NSCLC – failures in large tumors attributed to hypoxia

Brown et al., Int. J. Radiat. Oncol. Biol. Phys. 2010

Particle-induced vascular effects

Old Paradigm: High energy protons and photons are both low LET radiations that have nearly indistinguishable biological effects but different physical characteristics.

➢ Protons have dose distribution properties that can be utilized for superior tumor targeting in the clinic.

Photon Proton

The DNA damage induced by low LET protons and photons should be essentially equivalent, given their similar track structures at the nm scale.

➤The RBE of protons obtained from standard endpoints of cell killing is close to unity (1.1–1.2) and can be applied to more complex endpoints.

Girdhani et al., Radiat. Res. 2013

New Paradigm: High energy protons and photons have distinct physical and biological properties.

Limited applicability of RBE obtained through traditional endpoints that focus on cell death.

Protons show unique molecular and cellular responses compared to photon radiation, e.g. induction of more complex DNA damage, differential gene expression, and epigenetic modulation and induction of distinct signaling pathways.

➤Data suggest protons induce complex systems-wide responses that are divergent to those of photons, including inhibition of angiogenesis, invasion and modulation of inflammation.

"old" or "new" radiobiology?

- 1. Can the LQ models explain SBRT (Strigari *et al., Med. Phys.* 2012)?
- 2. What would be the prediction for particle therapy (RBE~1)?
- 3. If the hypoxic fraction is the main problem for SBRT, can we overcome it by heavy ions?
- 4. Is the heterogenous dose distribution in SBRT a sort of dose-painting (Ruggieri *et al., Acta Oncol.* 2010)?

- Is vascular damage really important? Can we use xenografts (is vascularization the same)?
- 2. Comparison of clamped and very high-dose irradiated tumors?
- 3. In vitro data suggest that charged particles have antiangiogenic effects and high RBE for endothelial cells, but animal data are lacking
- 4. A rat model was used for the lung (Tinnel *et al., Technol. Cancer Res.,* 2007)

Biophysics Department M. Durante (Director) G. Kraft (Helmholtz Professor) G. Taucher-Scholz (DNA damage) S. Ritter (Stem cells) C. Fournier (Late effects) C. Hartel (Clinical radiobiology) M. Scholz (Biophysical modelling) M. Krämer (Treatment planning) C. Graeff (Moving targets) C. La Tessa (Dosimetry)

http://www.gsi.de/biophysik/

