

Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

Applicazione clinica: Fegato

Dr.ssa Marta Scorsetti

Radioterapia e Radiochirurgia, Istituto Clinico Humanitas

<section-header><section-header><section-header><image><section-header><section-header><section-header><image>

Sede del Corwegno: Università degli Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piala)

CLINICAL ASPECTS

• Metastatic disease to the liver is a common life-threatening complication encountered by cancer patients. Among patients who die of cancer, **30–70% have liver metastasis at autopsy**

• Most common primary sites are lung, breast, colon-rectum and uterus

• Synchronous or metachronous

CLINICAL ASPECTS

• Majority of liver metastases initially **clinically silent** and symptoms present at a late stage

• Imaging techniques, like CT scan or MRI, can detect liver metastases earlier in **asymptomatic patients** with advanced stages

• A subset of patients who present with **solitary or limited number of liver lesions** show improved survival after **surgical excision**

HUMANITAS

Sharma et al, Journal of HBP Surgery 2008

Sede del Convegno: Università degl'Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

SURGERY

• Patients with resected metastatic colorectal cancer have 5-year survival rates of 25–60%

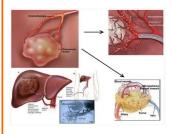
• Surgery has a positive impact on survival

What kind of ablative options are available for the remaining 80%?

• Surgery is technically difficult and only 20% of metastatic colorectal cancer patients are candidates for surgical resection

Fong Y. et al. (1995) CA Cancer J.Clin. Simmonds P.C. et al. (2006) Br.J.Cancer

5


HUMANITAS

LOCAL THERAPEUTIC APPROCHES

• In selected patients with a limited number of hepatic metastases who are not surgical candidates, a variety of ablative techniques have been developed.

• The most prominent in use are radiofrequency ablation (**RF**), transarterial chemoembolization (**TACE**), percutaneous ethanol injection (**PEI**).

• Although much less invasive than surgery, all of them have some grade of **invasiveness and serious limitations (large lesions, portohepatic region).**

Meij et al, World Journal of Surgical Oncology 2005 Kerneny N. et al, Oncology 2009

Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

Liver SBRT: Is it feasible?

• The major **dose-limiting** concern in the use of SBRT for liver tumors is the risk of radiation-induced liver disease (**RILD**)

• **RILD is a clinical syndrome** characterized by anicteric hepatomegaly, ascites, elevated liver enzymes (particularly alkaline phosphatase) occuring 2 weeks to 4 months after radiotherapy

Tai et al, IJROBP 2009 - Sawrie et al, Cancer Control 2010 Pan CC, Kavanagh BD, Dawson LA, Int J Radiat Oncol Biol Phys, 2010 (suppl)

HUMANITAS

7

Liver SBRT: dose-volumetric parameters

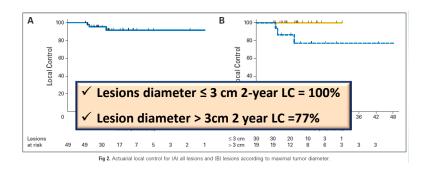
STEREOTACTIC BODY RADIOTHERAPY FOR PATIENTS WITH UNRESECTABLE PRIMARY HEPATOCELLULAR CARCINOMA: DOSE-VOLUMETRIC PARAMETERS PREDICTING THE HEPATIC COMPLICATION

Seok Hyun Son, M.D.,* Byung Ock Choi, M.D.,* Mi Ryeong Ryu, M.D.,* Young Nam Kang, Ph.D.,* Ji Sun Jang, M.S.,* Si Hyun Bae, M.D.,[†] Seung Kew Yoon, M.D.,[†] Ihe, Bohng Choi, M.D.,[‡] Ki Mun Kang, M.D.,[§] and Hong Seok Jang, M.D.*

From the Departments of *Radiation Oncology and ¹Internal Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea; ¹Cyberknife Center of Gimpo Woordul Spine Hospital, Seoul, Korea; ¹Department of Radiation Oncology, College of Medicine, Gyeongamy National University, Juliu, Korea

• Liver obeys the **parallel architecture model of radiobiology**, so the risk of RILD is generally proportional to the **mean dose** of radiation delivered to normal liver tissue

• It should be possible to safely treat small hepatic lesions with high doses of radiation by **using SBRT**, with adequate dose constraints for normal liver (**minimum volume of 700mL should receive a total dose less than 15 Gy**)



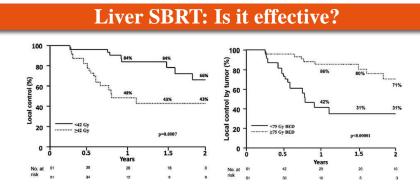
Liver SBRT: Is it effective?

Correlation between local control and diameter > 3cm

Rusthoven JCO 2009

9

HUMANITAS


Liver SBRT: Is it effective?Stereotactic Body Radiotherapy for Colorectal
Liver MetastasesDate MetastasesDate T. Chang, MD': Anand Swaminath, MD²: Margaret Kozak, BA³; Julie Weintraub, MD³: Albert C. Koong, MD, PhD⁵;
John Kim, MD⁵: Rob Dinnivell, MD²; James Brierley, MD²; Brian D. Kavanagh, MD, MPh³: Laura A. Dawson, MD²;
and Tracey E. Schefter, MD³Patients with colorectal liver metastases from 3 institutions were included if
they had 1 to 4 lesions, received 1 to 6 fractions of stereotactic body
radiotherapy, and had radiologic imaging 3 months post-treatment.

Sixty-five patients with 102 lesions treated from August 2003 to May 2009 were retrospectively analyzed. Forty-seven (72%) patients had ≥ 1 chemotherapy regimen before stereotactic body radiotherapy, and 27 (42%) patients had ≥ 2 regimens.

The median dose was 42 gray (Gy; range, 22-60 Gy). When evaluated separately by multivariate analysis, **total dose** (P ¹/₄ .0015), **dose/fraction** (P ¹/₄ .003), and **BED** (P ¹/₄ .004) all **correlated with local control by lesion.**

For a 3-fraction regimen of stereotactic body radiotherapy, a **prescription** dose of \geq 48 Gy should be considered, if normal tissue constraints allow.

HUMANITAS

11

Table 1 Prospe					effective?	s and their results
Ref.	Design	No of patients	Tumor size	SABR dose	Toxicity	Outcomes
Scorsetti et al ^[15]	Phase II (preliminary report)	61 (76 tumors)	1.8-134.3 cm ³ (mean 18.6 cm ³)	75 Gy in 3 fractions	No case of RILD. Twenty-six percent had grade 2 transaminase increase (normalised in 3 mo). Grade 2 fatigue in 65% patients, one grade 3 chest wall	1-yr LC94, 22-mo LC 90.6%
Goodman et al ^[16]	Phase I (HCC and liver mets)	26 (19 liver mets)	0.8-146.6 mL (median, 32.6 mL)	Dose escalation, 18-30 Gy (1 fr)	pain which regressed within 1 year. No dose-limiting toxicity 4 cases of Grade 2 late toxicity (2 GI, 2 soft tissue/rib)	1-yr local failure, 3% 2-yr OS, 49% (mets only
Ambrosino et al ^[17]	Prospective	27	20-165 mL (median, 69 mL)	25-60 Gy (3 fr)	No serious toxicity	Crude LC rate 74%
Lee <i>et al</i> ^[18]	Phase I - II	68	1.2-3090 mL (median, 75.9 mL)	Individualized dose, 27.7-60 Gy (6 fr)	No RILD, 10% Grade 3/4 acute toxicity No Grade 3/4 late toxicity	1-yr LC, 71% Median survival, 17.6 mo
Rusthoven <i>et al</i> ^[19]	Phase I - II	47	0.75-97.98 mL (median, 14.93 mL)	Dose escalation, 36-60 Gy (3 fr)	No RILD, Late Grade ¾ < 2%	1-yr LC, 95% 2-yr LC, 92% Median survival, 20.5 m
Høyer et al ^[10]	Phase II (CRC oligomets)	64 (44 liver mets)	1-8.8 cm (median, 3.5 cm)	45 Gy (3 fr)	One liver failure, two severe late GI Toxicities	2-yr LC, 79% (by tumor and 64% (by patient)
Méndez Romero et al ^[20]	Phase I - II (HCC and mets)	25 (17 liver mets)	1.1-322 mL (median, 22.2 mL)	30-37.5 Gy (3 fr)	Two Grade 3 liver toxicities	2-yr LC, 86% 2-yr OS, 62%
Herfarth <i>et al</i> ^[21]	Phase I - II	35	1-132 mL (median, 10 mL)	Dose escalation, 14-26 Gy (1 fr)	No significant toxicity reported	1-yr LC, 71% 18-mo LC, 67% 1-yr OS, 72%

SABR: Stereotactic ablative radiotherapy; RILD: Radiation induced liver disease; CRC: Colorectal cancer; HCC: Hepatocellular carcinoma; GI: Gastrointestinal; LC: Local control.

Nair et al. World J Radiol 2014 February 28; 6(2): 18-25

LIVER METASTASES: ICH Experience

Is Stereotactic Body Radiation Therapy an Attractive **Option for Unresectable Liver Metastases? A Preliminary Report From a Phase 2 Trial** Marta Scorsetti, MD,* Stefano Arcangeli, MD,* Angelo Tozzi, MD,* Tiziana Comito, MD,* Filippo Alongi, MD,* Pierina Navarria, MD,* Pietro Mancosu, MSc,* Giacomo Reggiori, MSc,* Antonella Fogliata, MSc,[‡] Guido Torzilli, MD,[†] Stefano Tomatis, MSc,* and Luca Cozzi, PhD[‡]

END POINTS:

PRIMARY: in-field local control

SECONDARY: toxicity and overall survival

INCLUSION CRITERIA:

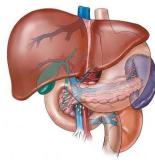

- · Inoperable or medically unsuitable for resection
- Maximum tumor diameter < 6cm
- \leq 3 discrete lesions
- Performance status 0-2
- · Good compliance to treatment

HUMANITAS

13

Liver SABR: prescription dose

	Dose/fraction	Number fractions	Total Dose
Standard dose	25Gy	3	75 Gy
Dose reduction 10%	22.5 Gy	3	67.5 Gy
Dose reduction 20%	20. 63 Gy	3	61.89 Gy
Dose reduction 30%	18.75 Gy	3	56.25 Gy



Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalii 25 (Aula Magna), Milano (MM2 Piola)

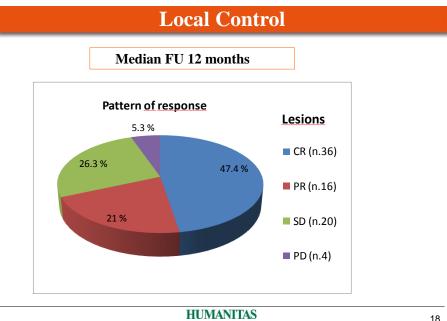
Liver SABR: dose constr					
ORGAN	Dose-Volume Limits	Other Conditions			
Healthy liver (defined as total liver volume minus cumulative GTV)	> 700 cc at < 15 Gy in 3 F	The volume of healthy liver > 1000 cc			
Spinal cord	< 18 Gy in 3 F				
Kidneys (R+L)	V15 Gy < 35%				
Stomach, duodenum, small intestine	< 21 Gy in 3 F (also for minimum volumes)	Patients with GTV < 8 mm from the heart, stomach, duodenum and small intestine to be excluded			
Heart	<30 Gy in 3 F				
Ribs	V30 Gy <30cc				

HUMANITAS

15

Patient characteristics

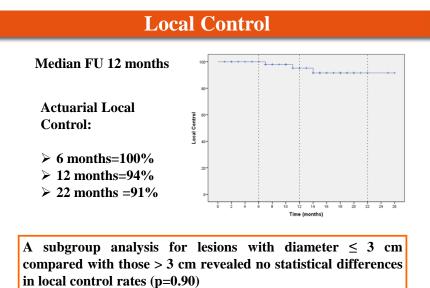
Patients characteristics	Value
No. of patients	61
Age (y)	65 (range 39 – 87)
Sex (male:female)	26:35
Baseline KPS	> 90
Prior liver-directed therapy	45% (28 pts)
Primary site	29 Colon11 Breast7 Gyn14 Other sites
Extrahepatic disease	34% (21 pts)

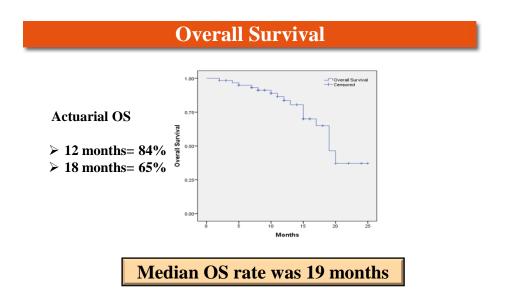


Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalii 25 (Aula Magna), Milano (MM2 Piola)

Treatment characteristics

Dose prescription	Lesions
Full dose 75 Gy	62 (82 %)
90%	6 (8 %)
80%	4 (5 %)
70%	4 (5 %)


Treatment charateristics	Value
No. of lesions	76
Diameter ≤ 3 cm	45 (60%)
Diameter > 3cm	31 (40%)
No. of lesions per patient	1 for 48 pts (79%) 2 for 11 pts (18%) 3 for 2 pts (3%)
UMANITAS	



HUMANITAS

19

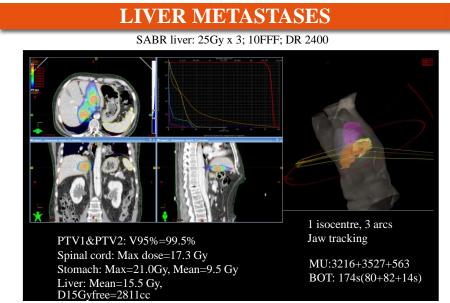
HUMANITAS

Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

Toxicity

ACUTE TOXICITY:

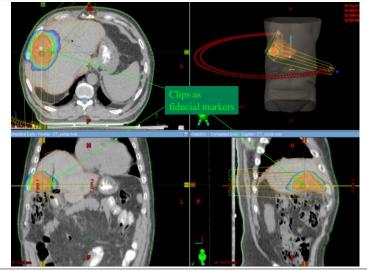
- G2 toxicity (vomiting, skin erythema and pain) 4%
- G2 transient transaminase increase 26%
- No G3-G4 or G5 toxicity observed

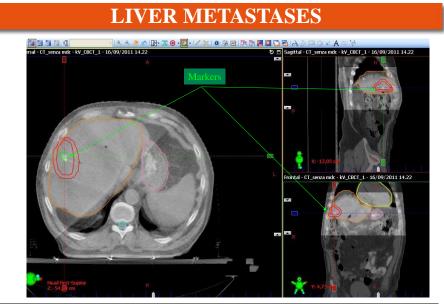

LATE TOXICITY:

One case of G3 chronic chest wall pain

NO RILD

HUMANITAS



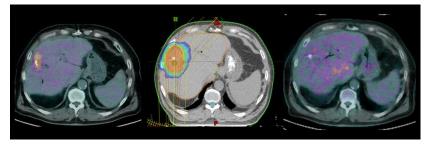

Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalii 25 (Aula Magna), Milano (MM2 Piola)

LIVER METASTASES

HUMANITAS

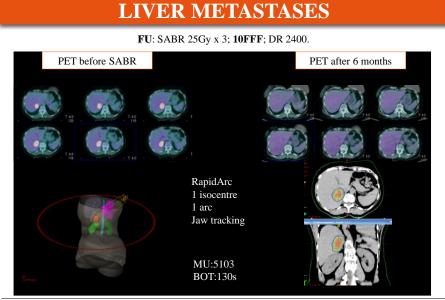
23

HUMANITAS



Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

LIVER METASTASES

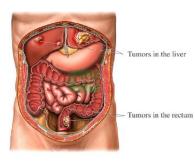

Patient treated with SABR for local relapse after hepatic surgery for colorectal metastasis

PET –CT pre-treatment, CEA 72 PET –CT post-treatment CEA 2.2

HUMANITAS

25

HUMANITAS


LIVER METS FROM COLORECTAL CANCER

Final results of a phase II trial for stereotactic body radiation therapy for patients with inoperable liver metastases from colorectal cancer

Marta Scorsetti • Tiziana Comito • Angelo Tozzi • Pierina Navarria • Antonella Fogliata • Elena Clerici • Pietro Mancosu • Giacomo Reggiori • Lorenza Rimassa • Guido Torzilli • Stefano Tomatis • Armando Santoro • Luca Cozzi

Purpose To evaluate the feasibility and efficacy of stereotactic body radiation therapy (SBRT) in the treatment of colorectal liver metastases.

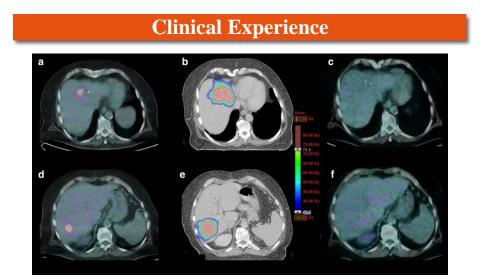
HUMANITAS

27

Patient and treatment characteristics

No. of Patients	42
Mean age (range)	67 (43-87)
Gender (M:F)	36:6
No. of treated lesions:	52
No. of liver lesions/pts:	
1	34 (81%)
2	5 (12%)
3	3 (7%)
Size of lesions	
\leq 3 cm	28 (55%)
> 3 cm	24 (45%)
Total Dose / Frs	75Gy/3fr

LIVER METS FROM COLORECTAL CANCER


Results Median follow-up was 24 (range 4–47) months. The progression in field was observed in 5 lesions. **Twenty four months actuarial local control (LC) rate was 91 %.** Median overall survival (OS) was 29.2 ± 3.7 months. **Actuarial OS rate at 24 months was 65%.** Median progression free survival was 12.0 ± 4.2 months; 24 months actuarial rate was 35 %.

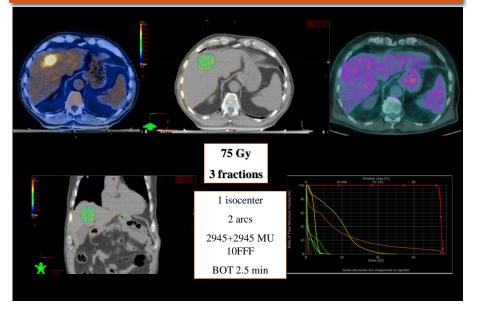
No patients experienced radiation-induced liver disease or grade \geq 3 toxicity.

Conclusions SBRT represents a feasible alternative for the treatment of colorectal liver metastases not amenable to surgery or other ablative treatments in selected patients, showing optimal LC and promising survival rate.

HUMANITAS

29

Patient treated with SBRT for two liver colorectal metastases. **a–d** Positron emission tomography (PET) pre-treatment image showing the lesions, defined by metal surgical clips. **b–e** Visualization of dose distribution on the planning target volume. **c–f** PET-CT image at 3 months after radiation therapy, showing complete metabolic response



Sede del Convegno: Università degl'Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

LIVER METS FROM COLORECTAL CANCER

Conclusions

Current evidence

Feasibility: Non invasive and low toxicity

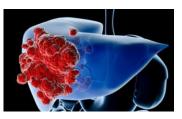
Efficacy: Optimal local control rate

Future directions:

- 1. Selection of patients with favourable
 - prognosis to evaluate the impact on survival
- 2. Comparative RCTs with other local

procedures (RF, TACE)

3. Association with chemo\target therapy



LIVER and SABR

Primary Tumor

HUMANITAS

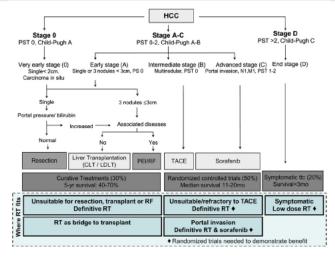
 Image: Straight of the straight

HCC is a leading cause of global cancer death. Curative therapy is not an option for most patients, often because of underlying liver disease.

Experience in radiation therapy (RT) for HCC is **rapidly increasing**. Conformal RT can deliver tumoricidal doses to focal HCC with low rates of toxicity and sustained local control **in HCC unsuitable for other locoregional treatments**.

Stereotactic body RT and particle therapy have been used with **long-term control in early HCC or as a bridge to liver transplant**. RT has **also been effective** in treating HCC with **portal venous thrombosis**.

Metastases



Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

BCLC staging system

Jonathan Klein and Laura A. Dawson, Int J Rad Onc Biol Ph. 2012

HUMANITAS

35

BCLC Stages and Results of Radiotherapy

BCLC stage*	Okuda stage	Definition	Liver function/PST	Applications of radiation	Median survival
Very early stage (0)	0	Single <2 cm Carcinoma in situ	Child A/0	SBRT alone or TACE+SBRT	44.4 ⁵⁶
Early stage (A)	1-2	Single to 3 nodules, <3 cm	Child A-B/0	TACE+RT	16-20 ^{39,65}
Intermediate stage (B)	1-2	Multinodular	Child A-B/0	TACE+RT	
Advanced stage (C)	1-2	Portal invasion, N1, M1	Child A-B/1-2	CCRT→iA CTx	15.2-16.769,76
Terminal stage (D)	3	Disseminated	Child C/>2	Palliative RT	2-5.180-82

Lee et al.Gut and Liver, Vol. 6, No. 2, April 2012

SABR for HCC

Author, (reference) Design study.	Pts	CTPc	Dose (Gy/ fr)	FUP Median months	Contro	ial local l (%) 2-years	Actuaria overall s (%) 1-ye vears	urvivall	PFS months
Andolino, (1,4)	36	A	48Gy/3fr	27	-	90%	75%	67%	20,4
Phase I- II	24	В	40Gy/5fr 45Gy /6fr						
Dawson, (2) Phase II	102	A/B	24-54Gy/6fr	31.4	87%	-	55%	-	6
Iwata, (3) Phase II	6	A/B	50 Gy/10 fr	14,5	94%	-	86%	-	-

References.

 Andolino DL, Johnson CS, Maluccio M, Kwo P, Tector AJ, et al.: Stereotactic body radiotherapy for primary hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 81, e447-453, 2011.

2. Dawson LA, Sequential Phase I and II trials of stereotactic Body radiotherapy for locally advanced Hepatocellular carcinoma. JCO, 2013.

 Iwata H, Shibamoto Y, Hashizume C, Mori Y, Kobayashi T, et al.: Hypofractionated stereotactic body radiotherapy for primary and metastatic liver tumors using the novalis image-guided system: preliminary results regarding efficacy and toxicity. Technol Cancer Res Treat 9, 619-627, 2010.

 tumors using the novalis image-guided system: preliminary results regarding efficacy and toxicity. Technol Cancer Res Treat 9, 619-627, 2010.
Cárdenes HR. Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin Transl Oncol (2010) 12:218-225

HUMANITAS

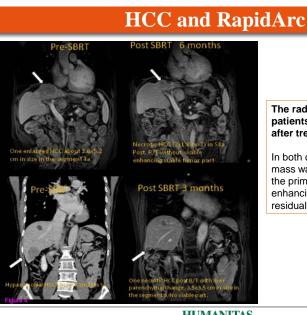
	HCC and RapidArc					
8	RADIATION ONCOLOGY	Radiat Oncol 2014 Jan 10;9(1):18. [Epub ahead of print]				
	2014	Feasibility of stereotactic body radiation therapy with volumetric modulated arc therapy and high intensity photon beams for hepatocellular carcinoma patients.				
40.1	open access journal	Wang PM, Hsu WC, Chung NN, Chang FL, Jang CJ, Fogliata A, Scorsetti M, Cozzi L.				
0						

Methods: Twenty patients (22 lesions) were prospectively enrolled in a feasibility study. Dose prescription was 50Gy in 10 fractions.

Results: Median follow-up time was **7.4 months** (range: 3–13). All patients completed treatment without interruption.

Mean actuarial overall survival was of 9.6 ± 0.9 months (95%C.L. 7.8-11.4), median survival was not reached; **complete response** was observed in 8/22 (**36.4**%) lesions; **partial response** in 7/22 (**31.8**%), **stable disease** in 6/22 (**27.3**%), 1/22 (**4.4**%) showed **progression**. Toxicity was mild with only 1 case of grade 3 RILD and all other types were not greater than grade 2.

Conclusions: Clinical results could suggest to **introduce VMAT-RapidArc as an appropriate SBRT technique** for patients with HCC in view of a **prospective dose escalation trial**.



Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

The radiological response for two patients at MR at 6 and 3 months after treatment.

In both cases, a residual necrotic mass was detected in the position of the primary HCC without visible enhancing of any viable tumor residual.

Wang PM, Radiat. Oncol., 2014

HUMANITAS

Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

HCC: Humanitas Experience

INCLUSION CRITERIA:

- ✓ Unsuitable for resection, TACE, RFA or alcohol ablation.
- ✓ Maximum tumor diameter < 8cm
- $\checkmark \le 3$ discrete lesions
- ✓ Performance status 0-2
- ✓ Child-Turgotte-Pugh A or B liver score
- \checkmark Absence of clinical ascites, encephalopathy, active hepatitis or gastric, duodenal or

variceal bleed within 2 months of SABR start.

 \checkmark No concomitant chemotherapy.

HUMANITAS

41

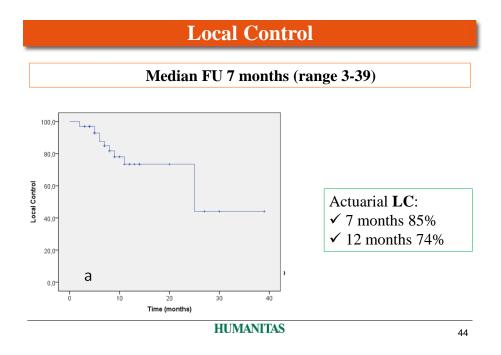
Patient characteristics

February 2011 and April 2014

Patients characteristics	Value
No. of patients	54
Age (y)	72 (46–87)
Sex (male:female)	39:15
Baseline KPS	> 90

All patients had Child-Turcotte-Pugh class A or B disease

HUMANITAS

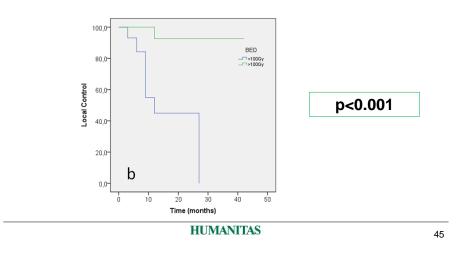


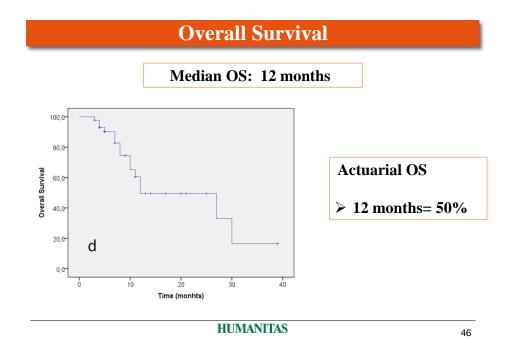
Treatment characteristics

Treatment charateristics	Value
No. of lesions	82
No. of lesions per patient	1 for 31 pts (57%) 2 for 18 pts (34%) 3 for 5 pts (9%)

Dose prescription	Lesions	Dose prescription and
48-75 Gy/3fr	30 (37 %)	fractionation were
36-45 Gy/6fr	33 (40 %)	according to lesions size
40-50 Gy/10fr	19 (23 %)	and liver function .

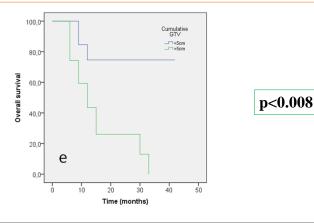
HUMANITAS

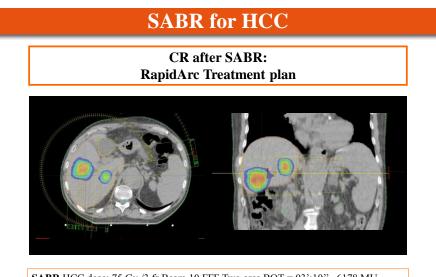




Local Control

Regimens with **Equivalent Dose** >100Gy in 3 and 6 fractions was a significant prognostic factors for LC (p<0.001) in univariate analysis.



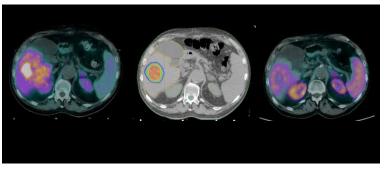

Overall Survival

Univariate analysis showed that OS significantly decreased in the subgroup of patients with Cumulative GTV >5cm.

HUMANITAS

47

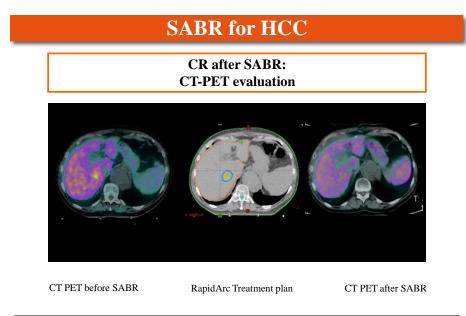
SABR HCC dose: 75 Gy /3 fr Beam 10 FFF Two arcs BOT = 03':10" 6178 MU



Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

SABR for HCC

CR after SABR: CT-PET evaluation


CT PET before SABR

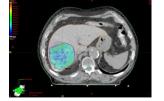
RapidArc Treatment plan

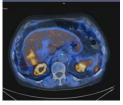
CT PET after SABR

HUMANITAS

49

HUMANITAS




Università degli Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

SABR for HCC

Partial remission after incomplete TACE plus SABR **CT-PET** evaluation

before SABR

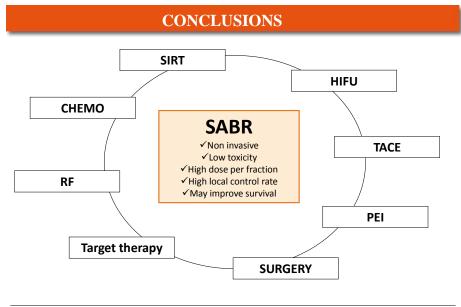
RA Treatment plan

after SABR

SABR HCC dose: 50 Gy /10 fr Beam 10 FFF Two arcs BOT = 01':40" 1272 MU

HUMANITAS

51

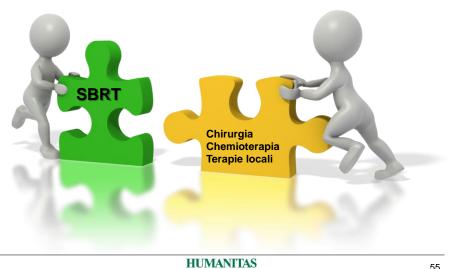

Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalli 25 (Aula Magna), Milano (MM2 Piola)

Challenges and Opportunities

Challenge	Barrier	Opportunity	
Late presentation	Lack of screening of high-risk patients	Patient/physician education Improved screening techniques	
Limited standard therapies	Complex HCC pathophysiology and diseased liver	Targeted therapies - Preclinical research - Phase 1 studies of RT and new agents	
Concurrent liver disease	Competing risks of from hepatitis/ cirrhosis vs HCC	Cross-disciplinary collaboration	
Patient selection for RT	Lack of level 1 evidence Limited dissemination of RT literature to non-RT experts	Randomized trials Multidisciplinary education	
Tumor identification	Imaging requires technical expertise	Standardize imaging protocols Radiation oncology education/radiology collaboration Radiology/pathology correlative research Functional imaging	
RT contour variability	Few published guidelines	Consensus guidelines	
Appropriate RT dose	Uncertainty in dose-response	Clinical studies to improve dose-outcome models Deformable image registration and dose accumulation Research of high dose per fraction biologic effects	
Conforming dose to tumor	Not enough liver	Advanced RT planning - Stereotactic body RT - Volume-modulated arc therapy	
	Identifying tumor at treatment	Charged particle therapy Image-guided radiation therapy Technology advances (e.g., magnetic resonance linac) Respiratory correlated imaging (eg. 4D CBCT) Contrast agents to identify tumor	
Liver toxicity	Understanding mechanism Few effective interventions	Contrast agents to identify fundor Regenerative research Stem cell/nepatocyte transplant Novel agents to mitigate injury	
Luminal gastrointestinal toxicity	Proximity of duodenum, bowel to liver	Spacers to move luminal tissue away from hepatocellular carcinoma Normal tissue protectors	Klein and Dawson IJROBP 2012

HUMANITAS

53



Sede del Convegno: Università degli Studi di Milano Via Luigi Mangiagalii 25 (Aula Magna), Milano (MM2 Piola)

THANKS

